Well-posedness and discrete analysis for advection-diffusion-reaction in poroelastic media

نویسندگان

چکیده

We analyse a PDE system modelling poromechanical processes (formulated in mixed form using the solid deformation, fluid pressure, and total pressure) interacting with diffusing reacting solutes medium. investigate well-posedness of nonlinear set equations fixed-point theory, Fredholm's alternative, priori estimates, compactness arguments. also propose finite element method rigorously demonstrate stability scheme. Error estimates are derived suitable norms, numerical experiments conducted to illustrate mechano-chemical coupling verify theoretical rates convergence.

منابع مشابه

Front tracking for quantifying advection-reaction-diffusion.

We present an algorithm for measuring the speed and thickness of reaction fronts, and from those quantities, the diffusivity and the reaction rate of the active chemical species. This front-tracking algorithm provides local measurements suitable for statistics and requires only a sequence of concentration fields. Though our eventual goal is front tracking in advection-reaction-diffusion, here w...

متن کامل

the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media

امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...

Well-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise∗

We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces .

متن کامل

Well-posedness and Ergodicity for Stochastic Reaction-diffusion Equations with Multiplicative Poisson Noise

We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces.

متن کامل

Optimal Stretching in Advection-Reaction-Diffusion Systems.

We investigate growth of the excitable Belousov-Zhabotinsky reaction in chaotic, time-varying flows. In slow flows, reacted regions tend to lie near vortex edges, whereas fast flows restrict reacted regions to vortex cores. We show that reacted regions travel toward vortex centers faster as flow speed increases, but nonreactive scalars do not. For either slow or fast flows, reaction is promoted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis

سال: 2021

ISSN: ['1026-7360', '1563-504X', '0003-6811']

DOI: https://doi.org/10.1080/00036811.2021.1877677